Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1356598, 2024.
Article in English | MEDLINE | ID: mdl-38666018

ABSTRACT

Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.

2.
Foods ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397516

ABSTRACT

Osteoarthritis (OA) persistently activates nociceptors, leading to chronic pain, which is often accompanied by the comorbid development of emotional impairments (anxiety and depression), an effect associated with microgliosis. Baccharis dracunculifolia DC (Asteraceae), a Brazilian edible plant, is an important source of active compounds with anti-inflammatory abilities. Thus, we evaluated its ability to reverse OA-induced nociceptive and emotional-like impairments in osteoarthritic ovariectomized female rats using the kaolin/carrageenan (K/C) model. Four weeks after OA induction, mechanical hyperalgesia was confirmed, and the treatment started. Control animals (SHAMs) were treated with phosphate-buffered saline (PBS), while arthritic animals (ARTHs) either received PBS or B. dracunculifolia 50 mg/kg (Bd50) and 100 mg/kg (Bd100), via gavage, daily for five weeks. At the end of the treatment, anxiety-like behavior was assessed using the Open Field Test (OFT), anhedonia was assessed using the Sucrose Preference Test (SPT), and learned helplessness was assessed using the Forced Swimming Test (FST). After occision, microglia were stained with IBA-1 and quantified in brain sections of target areas (prefrontal cortex, amygdala, and periaqueductal grey matter). Treatment with B. dracunculifolia extract reversed OA-induced mechanical hyperalgesia and partly improved depressive-like behavior in OA animals' concomitant to a decrease in the number of M1 microglia. Our findings suggest that B. dracunculifolia extracts can potentially be used in the food industry and for the development of nutraceuticals and functional foods.

3.
Biology (Basel) ; 12(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37997986

ABSTRACT

Genista tridentata (L.) Willk., known as "prickled broom", is a Leguminosae (Fabaceae) species native to the Iberian Peninsula, Morocco, Algeria, and Tunisia. It is used in folk medicine as an anti-inflammatory, for gastrointestinal and respiratory disorders, rheumatism, and headaches, to lower blood pressure, against hypercholesterolemia and hyperglycemia. This study aimed to systematically review the literature on the bioactivities and phytochemical profile of Genista tridentata to understand its pharmacological potential. For this, four electronic databases (PubMed, GoogleScholar, Repositórios Cientificos de Acesso Aberto de Portugal (RCCAP), and ScienceDirect) were searched from inception up to 31 December 2022. From a total of 264 potentially eligible studies considered for screening, 34 papers were considered eligible for this systematic review. The sampling included 71 extracts, collected mainly in Portugal. Genista tridentata extracts present a high level of flavonoids and phenolic compounds. The flowers and aerial parts of the plant were the most studied, and aqueous extracts were the most used. The results predict a high potential for the application of Genista tridentata as a new source of natural antioxidants and preservatives for the food industry with subsequent health benefits, such as the production of nutraceuticals. Moreover, the results indicate that the plant can be collected at all seasons of the year, which represents a benefit for the industry.

4.
Nat Methods ; 20(3): 403-407, 2023 03.
Article in English | MEDLINE | ID: mdl-36864199

ABSTRACT

We describe an architecture for organizing, integrating and sharing neurophysiology data within a single laboratory or across a group of collaborators. It comprises a database linking data files to metadata and electronic laboratory notes; a module collecting data from multiple laboratories into one location; a protocol for searching and sharing data and a module for automatic analyses that populates a website. These modules can be used together or individually, by single laboratories or worldwide collaborations.


Subject(s)
Laboratories , Neurophysiology , Databases, Factual
6.
Eur J Pain ; 26(7): 1546-1568, 2022 08.
Article in English | MEDLINE | ID: mdl-35603472

ABSTRACT

BACKGROUND: Prelimbic medial prefrontal cortex (PL-mPFC) and nucleus accumbens core region (NAcc) play an important role in supporting several executive cognitive mechanisms, such as spatial working memory (WM). Recently, this circuit has been also associated with both sensory and affective components of pain. However, it is still unclear whether this circuit is endogenously engaged in neuropathic pain-related cognitive dysfunctions. METHODS: To answer this question, we induced the expression of halorhodopsin in local PL-mPFC neurons projecting to NAcc, and then selectively inhibited the terminals of these neurons in the NAcc while recording neural activity during the performance of a delayed non-match to sample (DNMS) spatial WM task. Within-subject behavioural performance and PL-mPFC to NAcc circuit neural activity was assessed after the onset of a persistent rodent neuropathic pain model-spared nerve injury (SNI). RESULTS: Our results revealed that the induction of the neuropathy reduced WM performance, and altered the interplay between PL-mPFC and NAcc neurons namely in increasing the functional connectivity from NAcc to PL-mPFC, particularly in the theta-band spontaneous oscillations; in addition, these behavioural and functional perturbations were partially reversed by selective optogenetic inhibition of PL-mPFC neuron terminals into the NAcc during the DNMS task delay-period, without significant antinociceptive effects. CONCLUSIONS: Altogether, these results strongly suggest that the PL-mPFC excitatory output into the NAcc plays an important role in the deregulation of WM under pain conditions. SIGNIFICANCE: Selective optogenetic inhibition of prefrontal-striatal microcircuit reverses pain-related working memory deficits but has no significant impact on pain responses. Neuropathic pain underlies an increase of functional connectivity between the nucleus accumbens core area and the prelimbic medial prefrontal cortex mediated by theta-band activity.


Subject(s)
Memory, Short-Term , Neuralgia , Prefrontal Cortex , Animals , Memory Disorders/complications , Memory, Short-Term/physiology , Prefrontal Cortex/physiopathology , Rats , Rats, Sprague-Dawley , Theta Rhythm
7.
Pharmacol Biochem Behav ; 216: 173387, 2022 05.
Article in English | MEDLINE | ID: mdl-35429511

ABSTRACT

Anhedonia is the decreased ability to experience pleasure from rewarding or enjoyable activities, a core symptom of depression. The sucrose preference test (SPT), based on a two-bottle choice paradigm, is a widely used behavioural paradigm for the evaluation of anhedonia in rodents. Up to now, different protocols have been reported regarding water/food deprivation and duration of exposure to the water/sucrose solutions. In this work, by comparing six of the most used SPT protocols regarding sucrose preference and total intake, in both male and female Wistar Han rats, we showed (i) food/water deprivation does not significantly impact sucrose intake and preference; (ii) increasing the duration of the test is associated with an increased sucrose preference and (iii) no sex-specific differences in the basal sucrose preference of Wistar Han rats. Our results call for standardization of protocols and suggest a protocol without food/water deprivation and a 12-hour duration (lights out) as more efficacious in the measurement of anhedonia in rodents. This protocol not only reduces the confounding factors of drinking patterns and the stress-inducing food/water deprivation but also is not sensitive to sex-specific differences in the total intake of liquid in Wistar Han rats.


Subject(s)
Anhedonia , Water Deprivation , Animals , Female , Food Deprivation , Food Preferences , Male , Rats , Rats, Wistar , Sucrose/pharmacology , Water
8.
Elife ; 102021 05 20.
Article in English | MEDLINE | ID: mdl-34011433

ABSTRACT

Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We adopted a task for head-fixed mice that assays perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path toward achieving reproducibility in neuroscience through collaborative open-science approaches.


In science, it is of vital importance that multiple studies corroborate the same result. Researchers therefore need to know all the details of previous experiments in order to implement the procedures as exactly as possible. However, this is becoming a major problem in neuroscience, as animal studies of behavior have proven to be hard to reproduce, and most experiments are never replicated by other laboratories. Mice are increasingly being used to study the neural mechanisms of decision making, taking advantage of the genetic, imaging and physiological tools that are available for mouse brains. Yet, the lack of standardized behavioral assays is leading to inconsistent results between laboratories. This makes it challenging to carry out large-scale collaborations which have led to massive breakthroughs in other fields such as physics and genetics. To help make these studies more reproducible, the International Brain Laboratory (a collaborative research group) et al. developed a standardized approach for investigating decision making in mice that incorporates every step of the process; from the training protocol to the software used to analyze the data. In the experiment, mice were shown images with different contrast and had to indicate, using a steering wheel, whether it appeared on their right or left. The mice then received a drop of sugar water for every correction decision. When the image contrast was high, mice could rely on their vision. However, when the image contrast was very low or zero, they needed to consider the information of previous trials and choose the side that had recently appeared more frequently. This method was used to train 140 mice in seven laboratories from three different countries. The results showed that learning speed was different across mice and laboratories, but once training was complete the mice behaved consistently, relying on visual stimuli or experiences to guide their choices in a similar way. These results show that complex behaviors in mice can be reproduced across multiple laboratories, providing an unprecedented dataset and open-access tools for studying decision making. This work could serve as a foundation for other groups, paving the way to a more collaborative approach in the field of neuroscience that could help to tackle complex research challenges.


Subject(s)
Behavior, Animal , Biomedical Research/standards , Decision Making , Neurosciences/standards , Animals , Cues , Female , Learning , Male , Mice, Inbred C57BL , Models, Animal , Observer Variation , Photic Stimulation , Reproducibility of Results , Time Factors , Visual Perception
9.
J Control Release ; 331: 491-502, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33561482

ABSTRACT

Biological agents that neutralize the activity of pro-inflammatory cytokines are revolutionizing the treatment of inflammatory conditions. However, the antibodies (Abs) short half-life and off-target distribution critically limit their efficacy and safety. Therefore, this work proposes the immobilization of anti-TNF-α and anti-IL-6 Abs at the surface of polymeric nanoparticles (NPs) in order to extend and increase the Abs therapeutic efficacy, owing to the protection from degradation that the NPs provide, and to avoid off-target side effects through local administration. In an in vitro model of inflammation, biofunctionalized NPs were able to reduce the harmful effects on human chondrocytes provided by inflammatory macrophages, being demonstrated the additive effects of the dual neutralization. Significantly, biofunctionalized NPs ameliorated inflammation more efficiently than soluble Abs in an in vivo experimental model of inflammation, exhibiting a safe profile, a prolonged action, and a stronger efficacy. Hence, as this strategy is able to increase the therapeutic efficacy of the currently available treatments, it is a promising potential therapeutic option for inflammatory conditions.


Subject(s)
Nanoparticles , Tumor Necrosis Factor-alpha , Humans , Inflammation/drug therapy , Interleukin-6 , Tumor Necrosis Factor Inhibitors
10.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33431508

ABSTRACT

Powerful neural measurement and perturbation tools have positioned mice as an ideal species for probing the neural circuit mechanisms of cognition. Crucial to this success is the ability to motivate animals to perform specific behaviors. One successful strategy is to restrict their water intake, rewarding them with water during a behavioral task. However, water restriction requires rigorous monitoring of animals' health and hydration status and can be challenging for some mice. We present an alternative that allows mice more control over their water intake: free home-cage access to water, made slightly sour by a small amount of citric acid (CA). In a previous study, rats with free access to CA water readily performed a behavioral task for water rewards, although completing fewer trials than under water restriction (Reinagel, 2018). We here extend this approach to mice and confirm its robustness across multiple laboratories. Mice reduced their intake of CA water while maintaining healthy weights. Continuous home-cage access to CA water only subtly impacted their willingness to perform a decision-making task, in which they were rewarded with sweetened water. When free CA water was used instead of water restriction only on weekends, learning and decision-making behavior were unaffected. CA water is thus a promising alternative to water restriction, allowing animals more control over their water intake without interfering with behavioral performance.


Subject(s)
Citric Acid , Water , Animals , Behavior, Animal , Mice , Mice, Inbred C57BL , Rats , Reward
11.
Brain Res Bull ; 167: 56-70, 2021 02.
Article in English | MEDLINE | ID: mdl-33249262

ABSTRACT

Chronic neuropathic pain affects 7-10 % of the population and is often accompanied by comorbid emotional disorders, which greatly reduce the quality of life of the patients, impairing physical, cognitive, emotional, and social functioning. Despite the higher prevalence and severity of chronic pain in women, the number of publications using female animals remains scarce. While in the chronic constriction injury (CCI) model the development of mechanical/thermal hyperalgesia, allodynia and spontaneous pain has been shown in both sexes, little is known on CCI-induced emotional impairments and sciatic nerve histopathology in female rats, as well as on the contributions of ovarian hormones to peripheral nerve injury. In this work, young adult rats (Wistar Han) were assigned to one of five groups: gonadally intact females (SHAM/SHAM), ovariectomized females (SHAM/OVX), gonadally intact females with CCI (CCI/SHAM); ovariectomized females with CCI (CCI/OVX) and males with CCI (CCIM). In the postoperative period, CCI animals, both females and males, displayed visible gait abnormalities, limping and guarding the affected hind paw although locomotion was not affected. Neuropathic females developed sustained mechanical allodynia, with CCI/OVX animals displaying symptoms two weeks before CCI/SHAM females. Interestingly, regarding mechanical and cold allodynia, CCI males slowly recovered from week 3 onwards. While CCI induced neither anxiety- nor depressive-like behaviour in females, ovariectomy per se induced anhedonic-like behaviour, regardless of CCI surgery. Histopathological analysis of the sciatic nerve showed CCI induced nerve damage, fibrosis, myelin sheath degradation and inflammation. Single-cell electrophysiological data from the rostral ventromedial medulla (RVM) suggests this area is partly involved in descending facilitation associated with experimental neuropathic pain. Altogether, our findings demonstrate CCI females display distinct sensory, emotional, electrophysiological, and histopathological impairments from males, and that ovariectomy aggravates females' responses to peripheral nerve injury.


Subject(s)
Neuralgia/physiopathology , Nociceptive Pain/physiopathology , Peripheral Nerve Injuries/physiopathology , Sex Characteristics , Animals , Anxiety/etiology , Depression/etiology , Disease Models, Animal , Female , Male , Neuralgia/psychology , Nociceptive Pain/psychology , Peripheral Nerve Injuries/psychology , Rats , Rats, Wistar , Sciatic Nerve/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...